鑄鐵件性能差異原因及碳化硅是如何提升鑄件質(zhì)量的?
發(fā)布日期:2024-01-30
1、前言鐵液的化學(xué)成分相同,熔煉工藝不同,獲得鑄鐵的性能差異很大。鑄造工廠(chǎng)采取鐵液過(guò)熱、孕育處理、改變爐料配比、添加微量或合金元素等方法,提高鑄鐵的冶金質(zhì)量和鑄造性能,同時(shí)使力學(xué)性能和加工性能得到較大提高。感應(yīng)電爐熔煉鐵液,可以控制鐵液溫度,調(diào)整化學(xué)成分,元素?zé)龘p少,硫、磷含量低,對(duì)于生產(chǎn)球墨鑄鐵、蠕墨鑄鐵和高強(qiáng)度灰鑄鐵非常有利。但是感應(yīng)電爐熔煉鐵液的形核率減少,白口傾向大,易于產(chǎn)生過(guò)冷石墨,雖然強(qiáng)度和硬度有所增加,但鑄鐵的冶金質(zhì)量并不高。上世紀(jì)八十年代,出國(guó)考察學(xué)習(xí)的我國(guó)工程師,看到國(guó)外鑄造廠(chǎng)電爐熔煉時(shí)加入黑色碎玻璃狀物體,經(jīng)過(guò)詢(xún)問(wèn)得知這是碳化硅。國(guó)內(nèi)的日資鑄造企業(yè)也長(zhǎng)期大量使用碳化硅作添加劑。沖天爐或電爐熔煉鐵液,加入預(yù)處理劑SiC的優(yōu)點(diǎn)很多。碳化硅有磨料級(jí)和冶金級(jí)之分,前者純度高價(jià)格貴,后者價(jià)格低廉。加入熔爐內(nèi)的碳化硅轉(zhuǎn)化成鑄鐵的碳和硅,一是提高碳當(dāng)量;二是加強(qiáng)了鐵液的還原性,[2]大大減輕銹蝕爐料的不利作用。加入碳化硅可以防止碳化物析出,增加鐵素體量,使鑄鐵組織致密,顯著提高加工性能并使切削面光潔。增加球墨鑄鐵單位面積石墨球數(shù),提高球化率。對(duì)于減少非金屬夾雜物和熔渣,縮松,皮下氣孔也有良好的作用。
2、預(yù)處理的作用2.1 形核的原理在Fe-C共晶系中,灰鑄鐵在共晶凝固階段由于石墨的熔點(diǎn)高,是共晶體的相,奧氏體借助石墨析出。以每個(gè)石墨核心為中心所形成的石墨+奧氏體兩相共生共長(zhǎng)的晶粒稱(chēng)共晶團(tuán)。存在于鑄鐵熔液中的亞微觀石墨聚集體、未熔的石墨微粒、某些高熔點(diǎn)硫化物、氧化物、碳化物、氮化物顆粒等,都可能成為石墨的非均質(zhì)晶核。球墨鑄鐵的形核與灰鑄鐵形核沒(méi)有本質(zhì)區(qū)別,只是核心物質(zhì)中增加有鎂的氧化物和硫化物。
鐵液中石墨的析出經(jīng)歷形核和生長(zhǎng)兩個(gè)過(guò)程。石墨的形核有均質(zhì)形核和非均質(zhì)形核兩種方式。均質(zhì)形核亦稱(chēng)自生晶核。鐵液中有大量起伏不定的,超過(guò)臨界晶核尺寸的,近程有序排列的碳原子集團(tuán),可能成為均質(zhì)晶核。實(shí)驗(yàn)證明均質(zhì)晶核的過(guò)冷度很大,主要依靠非均質(zhì)晶核作為鐵液中石墨的生核劑。鑄鐵熔液中存在大量外來(lái)質(zhì)點(diǎn),每1cm3鐵液中,僅氧化物質(zhì)點(diǎn)就有500萬(wàn)個(gè)。只有那些與石墨的晶格參數(shù)、位相存在關(guān)系的質(zhì)點(diǎn),才能成為石墨形核基底。晶格匹配關(guān)系的特征參數(shù)稱(chēng)平面失配度。當(dāng)然只有晶格平面失配度小,才能夠讓碳原子容易與石墨晶核匹配。如果晶核材料是碳原子,那么它們的失配度為零,這樣的成核條件。[1]
碳化硅在鐵液內(nèi)分解成碳和硅比鐵液本身含有的碳和硅的內(nèi)能大,鐵液本身所含的Si溶于奧氏體中,球墨鑄鐵鐵液中的碳,部分在鐵液中形成石墨球,部分在奧氏體中尚未析出。因此碳化硅的加入,有很好的脫氧作用。
Si + O2 → SiO2 (1)
MgO +SiO2 →MgO?SiO2 (2)
2MgO +2SiO2→ 2MgO?2SiO2 (3)
頑輝石成分MgO?SiO2和鎂橄欖石成分2MgO?2SiO2與石墨(001)失配度高不易作為石墨形核的基底。當(dāng)經(jīng)過(guò)含有Ca、Ba、Sr及Al與硅鐵的孕育合金鐵液處理后,得到:
MgO?SiO2 + X → XO?SiO2 + Mg (4)
4(2MgO?2SiO2)+ 3X+ 6Al → 3(XO?Al2O3?2SiO2)+ 8Mg (5)
式中 X——Ca、Ba、Sr。
反應(yīng)產(chǎn)物XO?SiO2和XO?Al2O3?SiO可以在MgO?SiO2及2MgO?2SiO2基底上形成面晶,由于石墨與XO?SiO2和XO?Al2O3?SiO2失配度低,利于石墨形核,有很好的石墨化作用。能很好的加工性能和提高力學(xué)性能的作用。[3]
2.2 非平衡石墨的預(yù)孕育:
一般,通過(guò)孕育來(lái)擴(kuò)大非均質(zhì)形核范圍,鐵液中非均質(zhì)形核的作用:①共晶凝固階段C大量析出并形成石墨,石墨化;②減小鐵液過(guò)冷度,減少白口傾向;③增加灰鑄鐵共晶團(tuán)數(shù)或增加球墨鑄鐵石墨球數(shù)。
SiC是爐料熔煉過(guò)程中加入的。碳化硅熔點(diǎn)2700℃,在鐵液中不熔化,只按下列反應(yīng)式融熔于鐵液。
SiC+Fe→FeSi+C(非平衡石墨) (6)式中SiC里的Si與Fe結(jié)合,余下的C就是非平衡石墨,作為石墨析出的核心。非平衡石墨使鐵液中C不均勻分布,局部C元素過(guò)高,微區(qū)會(huì)出現(xiàn)“碳峰”。這種新生的石墨有很高的活性,它與碳的失配度為零,因此很容易吸收鐵液中的碳,孕育效果極其優(yōu)越。由此可以看出碳化硅就是這樣一種硅基生核劑。[1]
鑄鐵熔煉時(shí)加入碳化硅,對(duì)于灰鑄鐵,非平衡石墨的預(yù)孕育,大量生成共晶團(tuán)并提高生長(zhǎng)溫度(減小相對(duì)過(guò)冷度),有利于形成A型石墨;晶核數(shù)量增加,使片狀石墨細(xì)小,提高石墨化程度減少白口傾向,從而提高力學(xué)性能。對(duì)于球墨鑄鐵,結(jié)晶核心增多使石墨球數(shù)增加,球化率得以提高。
2.3 E型石墨過(guò)共晶灰鑄鐵,C型、F型初生石墨在液相形成,由于生長(zhǎng)過(guò)程不受奧氏體干擾,一般情況下,容易長(zhǎng)成大片狀且分枝少的C型石墨;薄壁鑄件快速冷卻時(shí),石墨會(huì)分叉生長(zhǎng)成星狀的F型石墨。[4]
共晶凝固階段生長(zhǎng)的片狀石墨,在不同化學(xué)成分和不同過(guò)冷條件下,生成不同形態(tài)和不同分布的A、B、E、D型石墨。
A型石墨在過(guò)冷度不大和成核能力較強(qiáng)的共晶團(tuán)內(nèi)生成,在鑄鐵中均勻分布。細(xì)片狀珠光體中,石墨長(zhǎng)度越小,抗拉強(qiáng)度越高,適用于機(jī)床及各種機(jī)械鑄件。
D型石墨為點(diǎn)、片狀的枝晶間石墨,呈無(wú)方向性分布。D型石墨鑄鐵鐵素體量高,力學(xué)性能受影響。但D型石墨鑄鐵奧氏體枝晶多,石墨短小卷曲,共晶團(tuán)呈球團(tuán)形,所以與相同基體A型石墨鑄鐵相比,往往具有較高的強(qiáng)度。
E型石墨是一種比A型石墨短小的片狀石墨。與D型石墨一樣位于枝晶間,統(tǒng)稱(chēng)為枝晶石墨。E墨容易在碳當(dāng)量低(亞共晶程度大)、奧氏體枝晶多而發(fā)達(dá)的鑄鐵中產(chǎn)生。這時(shí),共晶團(tuán)與枝晶交叉生長(zhǎng),由于枝晶間共晶鐵液數(shù)量較少,析出的共晶石墨只有沿著枝晶方向分布,具有明顯的方向性。形成E型石墨的過(guò)冷度大于A型石墨小于D型石墨,它的粗細(xì)、長(zhǎng)短處于A、D型石墨之間。E型石墨不屬于過(guò)冷石墨,經(jīng)常與D型石墨伴生。E型石墨的方向性枝晶間分布,使鑄鐵很容易在較小的外力作用下,沿著石墨排列方向呈帶狀脆斷。所以出現(xiàn)E型石墨,用手可以掰斷小型鑄件的邊角,鑄件強(qiáng)度大大下降。隨著含碳量的增加,形成細(xì)小枝晶間石墨所的冷卻速度提高了,產(chǎn)生枝晶間石墨的可能性減少了。熔液高度過(guò)熱以及長(zhǎng)時(shí)間保溫會(huì)使過(guò)冷度增大,從而提高枝晶生長(zhǎng)速度,使枝晶變長(zhǎng),方向性更明顯。用SiC對(duì)鐵液做預(yù)孕育處理時(shí),同時(shí)減小初生奧氏體的過(guò)冷度,此時(shí)觀察到短的奧氏體枝晶。了E型石墨產(chǎn)生的結(jié)構(gòu)基礎(chǔ)。[1]
2.4 提高鑄鐵質(zhì)量
對(duì)于球墨鑄鐵,在球化劑加入量相同的情況下,用碳化硅進(jìn)行預(yù)處理,鎂的收得率較高。用碳化硅預(yù)處理的鐵液,如果保持鑄件殘留鎂量大致相同,球化劑的加入量可以減少10%,球墨鑄鐵的白口傾向得到。[2]
碳化硅在熔煉爐內(nèi),除去(1)式反應(yīng)所示在鐵液中增碳、增硅以外,還進(jìn)行式(2)、(3)的脫氧反應(yīng),如果加入的SiC靠近爐壁,生成的SiO2會(huì)在爐壁沉積增加爐壁厚度。在熔煉的高溫下,SiO2將發(fā)生式(4)的脫碳反應(yīng),式(5)、(6)的渣化反應(yīng)。
。7) 3SiC + 2Fe2O3 = 3SiO2 +4Fe +3C
。8)C + FeO → Fe + CO ↑
。9)(SiO2 )+ 2C = [Si] + 2CO(氣態(tài))
(10)SiO2 + FeO → FeO?SiO2 (渣)
。11)Al2O3 + SiO2 → Al2O3?SiO2 (渣)
碳化硅的脫氧作用,使得脫氧產(chǎn)物在鐵液中有一系列冶金反應(yīng),減輕銹蝕爐料中氧化物的有害影響,凈化鐵液。
2.5 碳化硅的使用方法冶金級(jí)的碳化硅,純凈度在88%-90%之間,在計(jì)算增碳與增硅時(shí)要扣除雜質(zhì)量。根據(jù)碳化硅的分子式,很容易得出:增碳: C= C/(C + Si)= 12 / (12 + 28) = 30% (12)增硅: Si= Si/(C + Si)= 28 / (12 + 28) = 70% (13)碳化硅的加入量,通常只要加入鐵液量的0.8%-1.0%就可以了。碳化硅的加入方法是:電爐熔煉鐵液,在坩堝熔融1/3爐料時(shí),加入到坩堝中部,盡量不要接觸爐壁,然后繼續(xù)加入爐料熔煉。沖天爐熔煉鐵液,可以將粒度1-5mm的碳化硅與適量水泥或其它粘接劑混合,加水制成團(tuán)塊狀,經(jīng)過(guò)烈日曬干后即可按批料比例下?tīng)t使用。
3、結(jié)束語(yǔ)近20年來(lái),無(wú)論是載重汽車(chē)還是商務(wù)或家用小汽車(chē),減輕整車(chē)重量始終是汽車(chē)研發(fā)的發(fā)展趨勢(shì)。在金融危機(jī)的市場(chǎng)頹勢(shì)中,中國(guó)北方公司逆勢(shì)而上,重型載重汽車(chē)出口北美,正是基于重載汽車(chē)輕量化的結(jié)果。薄壁灰鑄鐵、球墨鑄鐵和蠕墨鑄鐵件,厚壁的球墨鑄鐵件以及奧貝球墨鑄鐵件的應(yīng)用,對(duì)鑄鐵冶金質(zhì)量提出更高的要求。碳化硅的孕育預(yù)處理對(duì)鑄鐵的冶金質(zhì)量有良好的作用。鑄造專(zhuān)家李傳栻撰文指出:預(yù)處理劑加入鐵液后,可以觀察到兩種作用:一是碳當(dāng)量提高;二是鐵液的冶金條件改變,加強(qiáng)了還原性。1978年,英國(guó)的B.C.Godsell曾發(fā)表其對(duì)球墨鑄鐵進(jìn)行預(yù)處理的研究結(jié)果,此后,對(duì)預(yù)處理工藝的試驗(yàn)研究一直沒(méi)有間斷,現(xiàn)在這項(xiàng)工藝已比較成熟。對(duì)于灰鑄鐵,碳化硅孕育預(yù)處理可以降低過(guò)冷度減少白口傾向;增加石墨核心,形成A型石墨,減少或防止產(chǎn)生B型、E型和D型石墨,增加共晶團(tuán)數(shù),得到細(xì)小的片狀石墨;對(duì)于球墨鑄鐵,碳化硅孕育預(yù)處理則增加鑄鐵的石墨球數(shù),提高球化率,石墨球的圓整度。碳化硅的使用可以加強(qiáng)對(duì)氧化鐵的脫氧還原作用,使鑄鐵組織致密從而增加切削面的光潔,使用碳化硅可以延長(zhǎng)爐壁壽命,不會(huì)增加鐵液的鋁、硫含量。
鑄鐵件性能差異原因及碳化硅是如何提升鑄件質(zhì)量的?
相關(guān)標(biāo)簽: